Analysis of hypersingular residual error estimates in boundary element methods for potential problems
ثبت نشده
چکیده
A novel iteration scheme, using boundary integral equations, is developed for error estimation in the boundary element method. The iteration scheme consists of using the boundary integral equation for solving the boundary value problem and iterating this solution with the hypersingular boundary integral equation to obtain a new solution. The hypersingular residual r is consistently defined as the difference in the derivative quantities on the boundary, i.e. O~ (1) 0(~ (2i r On On where ~b is the potential and (OfMOn) "), i = 1, 2, is the flux obtained by solution (i). Here, i = 1 refers to the boundary integral equation, and i = 2 refers to the hypersingular boundary integral equation. The hypersingular residual is interpreted in the sense of the iteration scheme defined above and it is shown to provide an error estimate for the boundary value problem. Error-hypersingular residual relations are developed for Dirichlet and Neumann problems, which are shown to be limiting cases of the more general relation for the mixed boundary value problem. These relations lead to global bounds on the error. Four numerical examples, involving Galerkin boundary elements, are given, and one of them involves a physical singularity on the boundary and preliminary adaptive calculations. These examples illustrate important features of the hypersingular residual error estimate proposed in this paper. © 1999 Elsevier Science S.A. All rights reserved.
منابع مشابه
Boundary element methods for potential problems with nonlinear boundary conditions
Galerkin boundary element methods for the solution of novel first kind Steklov–Poincaré and hypersingular operator boundary integral equations with nonlinear perturbations are investigated to solve potential type problems in twoand three-dimensional Lipschitz domains with nonlinear boundary conditions. For the numerical solution of the resulting Newton iterate linear boundary integral equations...
متن کاملInstitut F Ur I F Am Angewandte Mathematik a Posteriori Error Estimates for Hp { Boundary Element Methods a Posteriori Error Estimates for Hp { Boundary Element Methods
This paper presents a posteriori error estimates for the hp{version of the boundary element method. We discuss two rst kind integral operator equations, namely Symm's integral equation and the integral equation with a hypersingular operator. The computable upper error bounds indicate an algorithm for the automatic hp{adaptive mesh{reenement. The eeciency of this method is shown by numerical exp...
متن کاملA Posteriori Error Estimates for Boundary Element Methods
This paper deals with a general framework for a posteriori error estimates in boundary element methods which is specified for three examples, namely Symm's integral equation, an integral equation with a hypersingular operator, and a boundary integral equation for a transmission problem. Based on these estimates, an analog of Eriksson and Johnson's adaptive finite element method is proposed for ...
متن کاملA posteriori boundary element error estimation (
An a posteriori error estimator is presented for the boundary element method in a general framework. It is obtained by solving local residual problems for which a local concept is introduced to accommodate the fact that integral operators are nonlocal operators. The estimator is shown to have an upper and a lower bound by the constant multiples of the exact error in the energy norm for Symm’s a...
متن کاملSignificant Error Propagation in the Finite Difference Solution of Non-Linear Magnetostatic Problems Utilizing Boundary Condition of the Third Kind
This paper poses two magnetostatic problems in cylindrical coordinates with different permeabilities for each region. In the first problem the boundary condition of the second kind is used while in the second one, the boundary condition of the third kind is utilized. These problems are solved using the finite element and finite difference methods. In second problem, the results of the finite di...
متن کامل